International Conference on Non-Electric Applications of Nuclear Power

Oarai, Japan from 16 to 19 April 2007.

ECONOMICAL EVALUATION OF NUCLEAR WATER DESALINATION IN TUNISIA

A. KOCHED¹, S. BACCOUCHE², M.S. GUELLOUZ¹

- 1- Ecole Nationale d'Ingénieurs de Monastir
- 2- Centre National des Sciences et Technologies Nucléaires

Tunisia

- Population: 10 million
- Area: 164,418 km²
- Capital & largest city: Tunis (1.7 million).
- 56 persons per km²
- Arid central and southern parts:
 - 70% of total area
 - < 30% of population.</p>

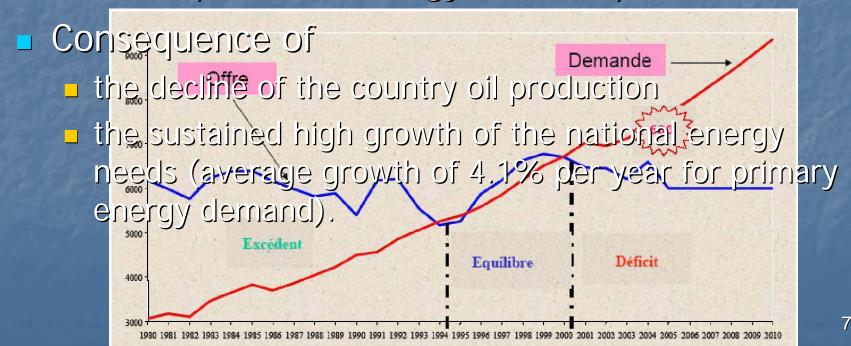
Scope

- > Extension to the TUNDESAL Project done by
 - > CNSTN, STEG, SONEDE (Tunisia)
 - > CEA (France)
 - > IAEA.
 - technical study (optimizing the nucleardesalination plants coupling)
 - → economical assessment (using DEEP2)
 - > Update the economical study using DEEP3

CURRENT SITUATION IN TUNISIA

- Water needs
- Energy situation
- Electricity generation

Tunisia's Water Needs (1)


- Tunisia is among the 80 countries experiencing water scarcity.
- The average drinking water supplies are currently 4,5 million m³/year
 - i.e. around 450 m³/year and per capita
 - below the poverty threshold.
- Approximately 40% of these resources are underground waters, with salinities between 0.5 and 3.5 mg/m³.
- The salinity of the entire resource is relatively high with only 54 % having salinities lower than 1.5 mg/m³.
- 84 % of these good quality drinking waters are located in the north of the country.

Tunisia's Water Needs (2)

- Tunisia started using desalination since the 1980s.
- 4 stations: Kerkennah, Jerba, Gabes & Zarzis
- Total capacity: 58 800 m³/day+ 8,500 under construction
- All use Reverse Osmosis
- Input water quality: 3.2-6 mg/m³
- Produced water quality: 0.15-0.75 mg/m³
- North-south Aqueducts.

Tunisia's Energy Situation

- Tunisia changed status during the last decade
 - In 1980s production surplus (3 Mtep)
 - Net importer of energy (0,6 Mtep in 2004).

Electricity generation

Installed capacity: 2 893MW, peak demand 2 124 MW (2004)

- By technology:
 - 40.2% Combined cycle
 - 52.7% steam cycle
 - 15.3% Gas Turbine
 - 1.5% hydro
 - 0.3% wind
- Fossil fuel:
 - 97,3% natural gas
 - 0.9 oil
- By provider:
 - 82.8% STEG (state owned)
 - 17.2% private companies (produce 22%)

Electricity demand for 2020

- Economical performance of Tunisia (6.8%/y GDP growth)
 - ⇒electricity demand expected to grow by an average 6.5 % per year
 - ⇒reach 31 260 GWh in 2020 with consumption peak of 5920 MWe
 - →Tunisian electrical network would support a 600MWe power plant around 2020
- > Tunisian utility, STEG, plans the introduction of the 600 MWe power plant level in 2018.
- > April 2006: Government instructed the utility to start feasibility studies for a nuclear plant for 2016-2020

Electricity production alternatives

Several solutions can be considered:

- Conventional power plants:
 - 1 Combined cycle plant (600 MWe)
 - 1 steam cycle plant (600 MWe)
- > Nuclear power plants:
 - 1 PHWR or AP(600 MWe) or 1 PWR (900 MWe) since network is interconnected with neighboring countries.
 - 2 modules of the innovating GT-MHR reactor (if commercialized).
 - 3 modules of the PBMR reactor (if commercialized).

Water demand for Skhira 2020

- Evaluation for the area of Skhira (most likely where the nuclear power plant would be built):
 - 1st scenario: use the current resource assessments for drinking water and project the resource needs for 2020.
 - \Rightarrow deficit of 150,000 m³/day.
 - 2nd scenario: Account for planned projects
 - ⇒ deficit of 48,000 m³/day

Desalination alternatives

Several solutions can be considered:

- > Distillation:
 - MED
- > Membrane processes:
 - RO

Power and desalination plants coupling:

- > For MED:
 - extract steam from turbine
 - Use waste heat
- > No optimization done here

DEEP input parameters

- > Skhira site related parameters:
 - Sea water average temperature: 21 °C
 - Sea water salinity: 38375 ppm

DEEP input parameters

> Hypotheses related to the desalination process

Parameters	Units			
Desalination plant type		MED	RO	
Reference year		2006		
Interest rate	%	5 - 8 - 10		
Reference unit size	m^3/d	24 000		
Specific construction cost	\$/m ³ /d	900	800	
Average salary				
Management	\$/year	20 000	20 000	
labor		7 000	7 000	
Availability		0.91	0.91	
Construction lead time	month	12 + nbr of units	12 + nbr of units ⁴	

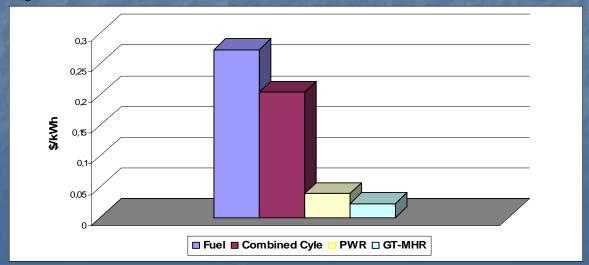
DEEP input parameters

> Hypotheses related to power plants

Parameters	Units		The Co	1 360	10.三次
Power station Type		GTMHR	PWR	CC600	TV600
Reference year	Section 1	2006			
Interest Rate	%	5 - 8 - 10			
Total power plant net output	MW_e	286	951	600	600
Total power plant thermal power	MW_{th}	600	2 882	1 069	1 538
Number of power plants units	Reflection (2	1	1	1
Efficiency	%	48	33	51	39
Availability	%	90,2	90,2	90,2	90,2
Construction lead time	Years	4	5	2	3
Specific construction cost	\$/kWe	975	1417	713	1135
Power plant life span	Year	60	40	25	30
Fossil fuel cost	\$/bbl	70, 100, 120			
Fossil fuel annual escalation rate	%/year	1779		2	2
Specific nuclear fuel cost (interest rates of 5, 8 and 10%)	\$/MWh	6.48 ; 6.48	and 6.54		15 -

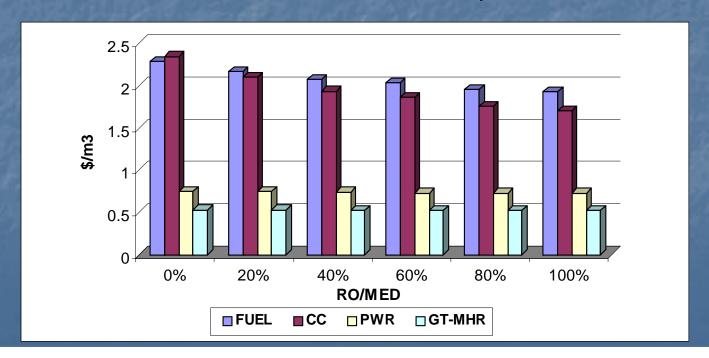
Economical evaluation

> Power-desalination plant couplings:


400	MED	RO
GT-MHR	X	W KINE
PWR 900	X	X
CC 600	X	X
TV 600	X	X

- Varied oil price, interest rate and desalination capacity.
- Considered hybrid installations: MED + RO
- For MED: considered steam extraction and waste heat

Main Results


Electricity cost

- > lowest for the GT-MHR.
- > Nuclear is in general much lower than fossil
- Difference depends on fossil fuel prices and interest rates
- > Example: PWR kWh is **81% lower** than that of CC600 (for 100 \$/bbl and 8% interest rate)

water cost

- > Reverse osmosis offers a desalination cost lower than that of MED.
- > Nuclear is in general lower than fossil
- ➤ Examples: CC + RO is 60% less expensive than CC + MED
 - PWR+ RO is **26% less** expensive than PWR + MED
 - PWR + RO is 37% less expensive than CC + RO

Comparison with DEEP2 results

- > Trends are the same.
- > For MED, DEEP3 yields higher estimates.
- > For RO, DEEP3 yields lower estimates
- > Examples:
 - FUEL+MED: DEEP3 cost is **14% higher** than DEEP2's
 - PWR+MED: DEEP3 cost is 21% higher than DEEP2's
 - FUEL+RO: DEEP3 cost is 41% lower than DEEP2's
 - PWR +RO: DEEP3 cost is 7% lower than DEEP2's

Conclusions

- DEEP is a simple and yet powerful tool
- The study showed the clear advantage of integrating the nuclear option to meet Tunisia's water and electricity needs for year 2020.

THANK YOU